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I i 

Logari thmic drag equations are  derived by the Prandt l - -Karman method. E r r o r  es t imates  for 
cer ta in  simplifications are  given, and e r r o r s  occurr ing in the l i te ra ture  are  eliminated. The 
maximum drag- reduc t ion  regime is discussed. 

The s implest  method of analyzing a turbulent boundary layer  on a plate in a 9iscous fluid is the Prandt l - -  
r �9 

Karman method [1, 2], which is based on the notion of a local dependence of the average velocity on the dynamic 
velocity u ,  (x) and boundary layer  thickness b (x) and the notion of coincidence of the velocity distributions near  
a plate and near  the wails of a pipe. 

This method has been extended to the descript ion of a boundary layer  of polymer  solutions [3-5]. How- 
ever ,  White [3] commits  a fundamental e r r o r ,  while the other two authors [4, 5] use formal  expansions with- 
out any e r r o r  discussion. We now show that simple drag equations are  obtained by virtue of the small p a r a m -  
e ters  in the problem. 

1. P r a n d t l - - K a r m a n  M e t h o d  f o r  P o l y m e r  S o l u t i o n s  

In fully developed turbulent flow far  f rom the surface of the plate l a rge - sca l e  inert ial  motions play a 
dominant role without being direct ly affected by the polymer  at the small  concentrat ions in question. ~ The 
average velocity distribution can be descr ibed by the usual "velocity defect law" [1] 

y + ~ _ V / u , = < u + > + [ l ( z l S ) ,  z > h  2. (i.i) 

Here  only the position zX 2 of the boundary of the wall buffer zone is affected by the presence  of the poly- 
mer .  

If the layer  thickness /'. 2 is relat ively small  (A2/5 << 0.1), we obtain f rom the equations of motion and 
incompressibi l i ty  (density p = 1), neglecting$ the contribution of the zone z < 2x 2 and normal  s t r e s ses ,  the 
K~rm{m integral  relation 

l 

V +2 068 = 1, V+~62=(DtV+--D2)6, D~= t'['~O])d~l, (1.2) 
Ox "o' 

the form of which i s  also independent of the type of fluid. 

The universa l  function fl(~) can be approximated with acceptable accuracy by the expression (see Gorod- 
tsov [6]) 

C1(1 --~1) 2, 1 > n  > ~11, 
~101) = _ A l l n ~ I _ B 1  ' ~11>~1>A2/6, (1.3) 

i It is assumed that the contribution of the forward par t  of the plate with undeveloped turbulence to the drag is 
negligible (large plates and veloeities). 
$ The case in whieh zX 2 ~ 0.15 6 and inwhieb it is neces sa ry  to consider  the zone z < A2 will be discussed in See. 5. 
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where  A z 2.44, C 1 z 9.6 [1, 2], and the condi t ions  fo r  smoo th  ma tch ing  at the point  ~ = ~1 a r e  ~l ~ 0.15 and 
B 1 ~ 2.3. In th is  app rox ima t ion  D 1 ~ 3.4 and D 2 ~ 22. 

The magn i tude  of the ve loc i ty  i s  sens i t ive  to the p r e s e n c e  of  a d i s so lved  p o l y m e r .  A c c o r d i n g  to s tudies  
of  f lows of  so lu t ions  in l a r g e  p ipes  [7, 8], even though fo r  z > &2 the ve loc i ty  i s  a l oga r i t hmic  funct ion of z 
(as without  the p o l y m e r ) ,  i t  i n c r e a s e s  by AB.  H e r e  AB depends  on the c h a r a c t e r i s t i c s  of the solution,  and 
this  dependence  can  be r e g a r d e d  with suff ic ient  a c c u r a c y  as  involving two p a r a m e t e r s  (~ and U .c r ) :  

b.B ~- [~A~ In (Vet/V +) h (Vet - -  V+). (1.4) 

In the l a t t e r  e x p r e s s i o n  h i s  the unit  Heav i s ide  function,  which has  a n o n z e r o  value only fo r  V + < V c r  -- V /  

U,cr. 

A c c o r d i n g  to the f u n d a m e n t a l p o s t u l a t e  of the P r a n d t l - - K ~ r m ~ n  me thod  Eq. (1.4) can a l so  be used  to 
d e s c r i b e  the flow of a solut ion ove r  a plate.  

The  ex i s t ence  of  a zone with a l o g a r i t h m i c  ve loc i ty  p ro f i l e  is  known [1] to  be a t t r ibu tab le  to  over lapping  
of the zones  in which the ou te r  and inne r  s i m i l a r i t y  laws  hold, and 

V- = AI In 6 + § B o + B1 -[- AB, 6 + ~ u,6/v. (1.5) 

In v i s cous  f luids  B 0 = 5.6, ZkB = 0, 2,+ ~ 30, and the condi t ion fo r  ex i s t ence  of a l oga r i t hmic  zone A 2 < 
~16 (noncont igui ty  of the  wall  and ou te r  t r ans i t i on  zones) ,  o r  5 + > 200, r e d u c e s  by v i r tue  of (1.5) to the r e q u i r e -  
men t  

(1.6) V + > 20. 

In p o l y m e r  so lu t ions  &~ i n c r e a s e s ,  and condi t ion (1.6) i s  all  the m o r e  n e c e s s a r y .  

B e s i d e s  the l a r g e  p a r a m e t e r  V +, i t  will  be advantageous  below to use  the sma l l  p a r a m e t e r  e(V+): 

0 In 6 . 0  _ V + D2 _ 1 V__f_ + , 
O In V + -- A--~- + [3 -~ Ol V+ _ D~ e (V +) "~" A1 § [3 + 0.35. (1.7) 

H e r e ,  a cco rd ing  to (1.6), we have e -1 > 8.7 + fi, and the app rox ima te  equal i ty  is  sa t i s f ied  with l e s s  than 
t w o - p e r c e n t  e r r o r .  

Consequent ly ,  f o r  the two unknown funct ions  u . (x)  and o(x) we have a comple t e  s y s t e m  of equat ions  (1.2), 
(1.4), (1. 5) conta in ing  sma l l  p a r a m e t e r s .  They  a r e  not  exac t ly  in tegrab le ,  in gene ra l ,  except  in the c a s e s  of 
a v i s cous  fluid (~ = 0) and in t ege r  va lues  of  ~. The opposi te  conc lus ion  is  drawn by White  [3] due to a g r o s s  
e r r o r .  L a n d w e b e r  and P o r e h  [9] u se  the in t eg rab i l i t y  f o r  i n t e g e r - v a l u e d  fi in the i r  ca lcu la t ions .  In the g e n e r a l  
s i tuat ion,  due to  the sma l l  p a r a m e t e r s ,  app rox ima te  in tegra t ion  is  poss ib le  and has  been c a r r i e d  out [4] by 
m e a n s  of f o r m a l  expans ions  in r e c i p r o c a l  p o w e r s  of V +. The expans ions ,  however ,  include t e r m s  with power s  
of the p a r a m e t e r  fiA1/V + [such t e r m s  a r i s e ,  fo r  example ,  in the s e r i e s  expans ion  of e(V +) in r e c i p r o c a l  power s  
of V+], which can be c lo se  to unity.  Addi t ional  p r e c i s i o n  is  t h e r e f o r e  needed. 

In t eg ra t ing  by p a r t s ,  we obt~tin f r o m  (1.2) and (1.7) 

I+~d6~ = X--Xo=Io~-fl" ~ (1 - -  2e + 2e~)V+~ 52 + I1, 
(1.8) 

I , =  ~ ( 1 - -  2e)e8 ( e - '  01nV + V+2d6v 

where  by Inequal i ty  (1.6) we have the  uppe r  bound I 1 < [(~ + 1 .2) / (~  + 8.7)3]I0 . This  bound p e r m i t s  us to r e -  
wr i t e  (1.8) as  fol lows with l e s s  than o n e - p e r c e n t  e r r o r :  

x - -  x o : V+262 exp (--  2e). (1.9) 

Thus ,  the d i f fe ren t ia l  equat ion (1.2)1 i s  r e p l a c e d  with accep tab le  a c c u r a c y  by the a lgeb ra i c  equation (1.9). 
Al l  tha t  r e m a i n s  i s  to t r a n s f o r m  the s y s t e m  of a lgeb ra i c  equat ions  (1.2)2, (1.4), (1.5), (1.7), and (1.9) to a 
usefu l  fo rm.  

In the flow of a homogeneous  p o l y m e r  solut ion o v e r  a smoo th  pla te  the s t r e s s  on the wal l  d e c r e a s e s  as  
the tu rbulen t  boundary  l a y e r  deve lops  [see  (2.7)], and ove r  the "length" of the p la te  (L > Lc r )  i t  can  fal l  below 
the c r i t i c a l  s t r e s s  u2. c r  f o r  inf luence  of  the  p o l y m e r .  Beginning with x -- L c r ,  the p o l y m e r  no longer  a f fec ts  

the tu rbu lence .  
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2. " S m a l l "  P l a t e  (L  < L c r )  

On a shor t  plate  the s t r e s s  on the wall  i s  above the c r i t i c a l  level  eve rywhere ,  and the sy s t em of equa-  
t ions (1.2)2 , (1.4), (1.5), (1.9) can be wri t ten in the f o r m  

( V+ ~ exp I V + - ~ ~  

Re x -~- Vx/v = Vxo/~ + V +~ Re~ exp [--  2r (V+)]. (2.2) 

H e r e  x 0 is  de te rmined  by the ini t ial  condit ions for  development  of a turbulent  boundary layer .  Nea r  the 
point of i t s  or igin  the wall  s t r e s s  is  a m a x i m u m ,  and the p o l y m e r  n e c e s s a r i l y  exe r t s  m a x i m u m  influence on 
the na ture  of the t rans i t ion  f r o m  l am i na r  to turbulent  flow. To date, however ,  this  p rob lem has  not been 
studied exper imenta l ly  fo r  flow of a solution over  a plate.  $ We a s sume  he re ina f t e r  that  Re x >> Vx0/v and often 
drop the t e r m  containing x 0. 

El iminat ing Re x and introducing the local  f r ic t ion  coeff ic ient  c f -  2/V +2, we r ewr i t e  (2.1) and (2.2) in the 
conventional  f o r m  

V2/c'f = A~ In (Re x c/2) + ~Ax In (Far cV~/2) + Be + B], (2.3) 

B~ = B~ - -  A~ In (O~-- O~ Vc/2)  + 2A~e (] / 'c~) .  (2.4) 

Within the one -pe rcen t  e r r o r  l imi t s  appl icable in the der iva t ion  of Eqs. (2.3) and (2.4) we can approxi -  
ma te  B' 1 by the express ion  --0.7 + 20 c4~-f and deduce the drag  equation$ (a -= 5.6p) 

(Z 
I/]/~ = 4 Ig(Rexcj) + - ~ -  Ig (Vcr cVc/2) + 2.3 + 14 i.'~. (2.5) 

If we allow a maximum three-percent error, we can put B' 1 ~ 1/3: 

CZ 
1/] /~ ---- 4 lg (re:r cl) + ~ Ig (Vc~ V c ~ )  +3. (2.6) 

The impl ic i t  na ture  of the dependence of cf on Re x is  a drawback of these  equations. However ,  owing 
to the sma l lnes s  of the p a r a m e t e r  ~-f-f~-= 1/V + they can be approx imate ly  expanded in V +. Thus,  in the 
in te rva l  of p rac t i ca l  i n t e re s t  20 < V + < 120, replacing logV + by 1.2 + 0.08 V +, we can t r a n s f o r m  the equation 
as follows within an e r r o r  of a few percent :  

(1 + 0 .04~) -~ j  = 3.6 lg JR% (Vc r / 16)~ ] - -  5. (2.7) 

It  is  c l e a r  f rom this resu l t  that the s t r e s s  on the wall d iminishes  monotonical ly  along the plate. 

3. " L a r g e "  P l a t e  (L  > L c r  ) 

Up to the point x = L c r  the s t r e s s  on the wall exceeds  the c r i t i ca l  value, and the development  of the 
boundary l aye r  is  the s ame  as fo r  a " s m a l l "  plate.  Af te r  this point the boundary l aye r  develops as in the 
case  of a v iscous  fluid. 

Taking x = L c r ,  V + = Vcr  as the s ta r t ing  point for  the in tegrat ion of Eq. (1.2)i , we obtain equations of 
the type (2.1) and (2.2) withfi  and x 0 rep laced  by, respec t ive ly ,  0 and Xcr: 

Inasmuch as  Eqs. (2.1) and (2.2) hold for  x-< Lcr ,  they can be used to exp re s s  L c r  in t e r m s  o f V c r  andB: 

Lar Xo+ v ( O l V a r ' O ~ / e x p [  Var - -B~  --2~(Vcr/1 (3.2) 
u, cr A1 

Hence we infer that 

In " smal l "  p ipes  the so -ca l l ed  " ea r l y  turbulence" effect  i s  obse rved  in the t rans i t ion  region. 
$ Other  numer i ca l  va lues  of the coeff ic ients  A i and B 0 a re  frequently chosen in the drag equations to provide 
a be t t e r  f i t  with the expe r imen ta l  data [2]. 
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"r 2[~A~ [ 2A1 1 
x cr ~ xo "+ V Vex ."{- ~Ax (D~Vcr -- O 2) exp Vet - -  Ax B~ - -  B~ Vet ] ' (3.3) 

where  the second t e r m  is  l ess  than 0.1 Lcr .  F o r  x > Lc r ,  t he re fo re ,  the quantity Xcr, l ike x 0 prev ious ly ,  can 
be dropped. 

Consequently,  for  Re x < V L c r / V  the equation fo r  the local  f r ic t ion coeff ic ient  of a long pla te  in  a poly-  
m e r  solution has  the f o r m  (2.5), and fo r  Re x > VLcr/V it is  the same  as  for  a v iscous  fluid (i. e. ,  for  fi = 0): 

1/V-~ = 4 lg (Rexct) -{- 2.3 -{- 14Vc~ (3.4) 

Within one -pe rcen t  e r r o r  l imi t s  this  re la t ion  can be rewr i t t en  in the f o r m  [see  (2.7)] 

11]/~ ~ 3.35 lg Rex -- 3. (3.5) 

4 .  T o t a l  F r i c t i o n  C o e f f i c i e n t  

F r o m  Eq. (1.2 h we obtain, a ssuming  that 6z(0 ) << 02(L), 
L 

C! ~ ~1 ~ c] (x) dx = 26~(L)L 

0 

2 V 82 (L) 
Re 

(4.1) 

and now f r o m  Eqs. (2.1) and (2.2) we can deduce p a r a m e t r i c  equations re la t ing  the total  f r ic t ion coeff icient  Cf 
and Reynolds n u m b e r  Re - VL/u:  

2 C I = ~ -  exp[2e(~)], ~ = V/u,(L), (4.2) 

Re = ~ (DI~--D2) ( ~ ' ~ e x p  [ V  cr J ~--B~ 2e (~)j] �9 
(4.3) 

Within one -pe rcen t  e r r o r  l imi t s  re la t ion  (4.2) is  readi ly  expanded in the p a r a m e t e r  ~: 

+ (4.4) 

and the subst i tut ion of (4.4) into (4.3) y ie lds  an express ion  for  Re in t e r m s  of Cf. On the other  hand, E q .  
(4.4) enables  us to de te rmine  the total  f r ic t ion coeff icient  Cf f rom the known local  f r ic t ion coeff icient  e lL = 

el(L): 

3,5V~ ) (4.5) 
= 7 - -  ~-~-- l " C/ CrL 1+ 1--1.7fl l' ciL, 

Eliminating the parameter ~ from (4.2) and (4.3) with one-percent error, we obtain the drag equation 

in its traditional form: 

I/l/~7= A1 in(ReC])+~ AI ]n(Vcr|/C~/2)+0.7-~ 8.5|f~-r - (4.6) 
-vV 

An expression of this type has been obtained earlier [4] for polymer solutions and, as already noted by 
Landweber and Porch [9], is satisfactory, despite the inadequacy of the intermediate calculations in the former 

paper. 

The inadequacy of Granville's calculations [4], as mentioned, lies in the fact that the expansions include 
terms containing the parameter flAt~-~, which cannot be small. Such terms, however, cancel one another in 
the final stage of the transition to (4.6). 

If, rather than the freestream velocity V, the plate length L is taken as the fixed parameter, it is neces- 
sary in the drag equation to make the substitution V = Rev/L, or Vcr = Reu/(LU*er); see Gorodtsov [10] for 

details. 

In a viscous fluid the quantity I/v~-ff essentially varies from 14to ~ 30, and (4.6) can be simplified, re- 

p lac ing  . . . . .  

tn V ~  -}-5 IZC) by - -  3,4 - -  0.11 l/~-s: 

1 /1 /~  = 3.3 lg Re - -  4,5. (4. 7) 
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5. M a x i m u m  D r a g  R e d u c t i o n  

We have assumed up to now that the th icknesses  of the viscous sublayer  and wall buffer zone are negli- 
gible in compar ison with the thickness of the boundary layer.  We now examine the case  in which the buffer 
zone is contiguous with the outer mixing zone of the flow, i .e . ,  A 2 ~- 0.155. We assume that this flow regime,  
for which the l a rge - sca l e  s t ruc ture  of the outer flow zone is the only factor  left unaltered by addition of the 
polymer,  is the maximum drag-reduct ion  regime. 

It is well known [8] that with a large drag reduction the velocity profile in the buffer layer  A 1 < Z < A 2 
is close to logari thmic,  so that it is once again permiss ib le  to use an approximation of the form (1.3) with 
A1/5 taken as the lower bound. However,  if C 1 ~ 9.6 and ~t ~ 0.15 remain  unchanged due to the p resumed in :  
var iance of the outer t ransi t ion zone, the remaining eoefficients$ now have different numerical  values: 

A~=11.6; B 0 = - 1 6 . 8 ;  B 1 - - - 1 5 . 1 ;  D 1=4.7; D~=80. (5.1) 

In the given special  case,  as for a viscous fluid, the integral  I 0 in (1.8) can be computed exactly (these 
two cases  differ only in the numerica l  coefficients): 

( 2A 1 2DIA~ 1 ) 
I0~  1 V + ~_D1V+ D 2 V + V+26~, (5.2) 

and the equations are  reduced to algebraic express ions  [eL (2,1) and (2.2)]: 

R%=(DI-- ~--~2+ )expIV+--B~ ] (5 .3 )  
A1 j ' 

[ 2A~ 2D~A~ ] 
Re~ = 1-- V+ -J- V + (D1 V+ - -  D~) V+2 Re2" 

These relations,  in turn, 
the drag equation: 

(5 .4 )  

can within one-percent  e r r o r  l imits be rewri t ten  in the tradit ional form for  

1/]/cs= 8.2 In (R% c/) -- 41 -- 8.2 In (1 -- 29 Kcss ~- 300cl). 

For the total friction coefficient Cf, using (4.1), (5.3), and (5.4), we write 

CfL 
Ci = 1--16,41/c~r[1 - -  8,2/(1/c~L-- 12)] 

Finally, f rom (4.1), 

(5 .5 )  

(5.6) 

(5.3), and (5.4) we obtain in approximate fashion the drag equation (cf. Granville 
[121) 

1/]/~-] = 8.21n (Re C]) - -49  -~ 140 1 Cj. (5.7) 

Note that for Re > 106 the e r r o r  incur red  in the transi t ion from (5.3)-(5.4) to (5.7) is a few percent,  while 
for smal le r  Reynolds numbers  the e r r o r  inc reases  to ten percent.  

NOTATION 

5, boundary layer  thickness;  62, momen tum- los s  distance; /X2, thickness of wall buffer zone; V, f ree -  
s t ream velocity; u . ,  dynamic velocity; U,cr,  c r i t ica l  dynamic velocity at which influence of the polymer  begins; 
6, dimensionless  charac te r i s t ic  of the intensity of influence of the polymer;  Re, Reynolds number;  cf, Cf, 
fr ict ion coefficients;  A1, B0, e l ,  C1, D1, D2, numer ica l  coefficients. 
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FLUID FRICTION OF A POLYMER SOLUTION FLOWING 

IN A LARGE-DIAMETER PIPE 

Yu. F. Ivanyuta and L. A. Chekalova UDC 532.135 

Expe r imen ta l  data a r e  given f r o m  compara t ive  t e s t s  to de te rmine  the fluid f r ic t ion  in flows of a 
Polyox solution with a concentra t ion c = 7" 10 -6 g /e ra  3 in pipes having d i a m e t e r s  d = 35.5 m m  and 
d = 514 mm.  

I t  1. The d i scovery  of drag  reduct ion effected in turbulent  flows of water  n e a r  a r igid wall  by the addi- 
tion of smal l  quant i t ies  of h igh -molecu la r -we igh t  compounds (polymers)  to the flow has in the las t  few y e a r s  
mot iva ted  extensive r e s e a r c h  a imed at explaining this  phenomenon and devising p rac t i ca l  methods  for  p r ed i c t -  
ing the at ta inable net effect. One of the poss ib le  techniques for  calculat ing the net effect  of drag  reduction in 
pipe flows of p o l y m e r  solutions has been p roposed  by the authors  [1]. The method is  based on un iversa l  
g raphs  of the inves t iga ted  influence of p o l y m e r  addit ives as a function of the type of po lymer ,  flow veloci ty  
in the pipe,  and concentra t ion of the solution [1, 2]. However ,  all  the exper imenta l  m a t e r i a l  used for  analysis  
and plot ted in the f o r m  of un ive r sa l  g raphs  r e f e r s  to flows in pipes whose d i a m e t e r s  do not exceed 35 m m  and 
the flow veloci ty  is such that the range  of Reynolds number s  is  7.103 to 3.105 . The published data on the 
influence of p o l y m e r  addit ives in a flow on the fr ic t ion in pipes  have also been obtained in the same range of 
pipe d i a m e t e r s  (d < 50 ram) and Reynolds number s  (Re < 5.105) and co r r e spond  quali tat ively to the resu l t s  of 
our  e a r l i e r  genera l iza t ion  [1, 2]. 

Thus,  all the ci ted expe r imen t s  have been conducted under  conditions of a l imi ted range of Reynolds 
number s  in compara t i ve ly  s m a l l - d i a m e t e r  pipes.  The diff icult ies  inherent  in the exper imen ta l  invest igat ion of 
the c h a r a c t e r i s t i c s  of turbulent  flow of po l ymer  solutions in pipes of l a rge  d i ame te r  s tem p r i m a r i l y  f rom the 

, b o f i 

0'0089 8 I0 s 2 4, 6 fos 2 4 Re 

Fig. 1. Coefficient  of fluid fr ic t ion v e r s u s  Reynolds number  Re 
for  flow of wa te r  and a Polyox solution with concentra t ion c = 
7 . 1 0  -6 g /cm 3 in pipes with d i a m e t e r s  d = 35.5 m m  (a) and d = 
514 m m  (b). 1) Water ;  2) Polyox solution; 3) Galav ics '  t es t s  
with wa te r  [4]: I) 1/'~-k'= 2 log Re'h---0.8.  

T r a n s l a t e d  f rom Inzhenerno-F iz ichesk i i  Zhurnal ,  Vol. 31, No. 3, pp. 493-498, Sep tember ,  1976. Orig-  
inal a r t i c l e  submit ted June 16, 1975o 

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 22 7 West 17th Street, New York, N.Y. 10011. No part ] 
of this publication may'be reprodueed, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, [ 
microfilming, recording or otherwise, without written permission of  the publisher. A copy of this article is available from the publisher for $Z50. 

1074 


